|
|||||
Cuando al acero de refuerzo (AR) se le exige desempeñar dos funciones antagónicas, es obvio que se le está demandando demasiado. Por una parte, debe actuar elásticamente para evitar la degradación del conjunto concreto-acero a fin de resistir efectivamente cargas sísmicas y gravitacionales, y por la otra, debe actuar inelásticamente para disipar la energía trasmitida a la estructura por el sismo. Ambas funciones son indispensables para lograr la sismorresistencia de las estructuras económicamente, pero tiene sentido separarlas, demandando al AR que haga lo pertinente –proveer resistencia–, mientras la disipación de energía se deja a cargo de medios idóneos como son los amortiguadores metálicos, que funcionan con base en la deformación inelástica del acero. Este artículo trata sobre el diseño de estructuras elásticas amortiguadas, capaces de resistir sismos con mínimas posibilidades de sustentar daños estructurales. |
En el diseño sismorresistente convencional de edificios de concreto reforzado se admite la posibilidad de que ante un sismo fuerte exista cierto grado de comportamiento inelástico en las vigas, no en las columnas, para evitar el colapso. Pero este comportamiento implica cierto grado de daño estructural. |
||||
Propiedades relevantes del acero Antes de entrar propiamente en el diseño de las estructuras anteriormente citadas, conviene hacer algunas precisiones sobre las propiedades mecánicas del acero que son relevantes a propósito de su uso como disipador de energía (amortiguador). En este contexto, la característica más importante del acero es la ductilidad, entendida como capacidad para sobrellevar deformación inelástica, característica que está muy ligada a la propiedad del acero comúnmente conocida como elongación. La elongación debe entonces ser alta y acompañada de poco endurecimiento por deformación. Con base en ensayos realizados anteriormente, se sabe que el acero al bajo carbono con 2 410 kg/cm2 de esfuerzo de cedencia, con 3 870 kg/cm2 de esfuerzo último, y con 39.5% de elongación en un intervalo de 5 cm, tiene excelente capacidad para disipar energía, tolerando un número grande de ciclos de deformación.1, 2 El acero de refuerzo denominado R42, producido en barras de diámetros 0.794 cm a 3.81 cm, es de uso muy generalizado en México. Las propiedades mínimas del acero R42, según especificaciones de los fabricantes, son: esfuerzo de cedencia 4 200 kg/cm2, esfuerzo último 6 350 kg/cm2, y elongación 7 a 11%, dependiendo del diámetro, en un intervalo de 20 centímetros. Debe señalarse que los valores de las propiedades del acero antes citados resultan de ensayos de tensión simple, y que, por norma, su especificación no considera la reducción del área transversal del espécimen de prueba. Esto significa que dichos valores son sustancialmente menores que los reales, particularmente los referentes al esfuerzo último y a la elongación. Por ejemplo, el acero SAE 1025 tiene un esfuerzo último de 3 870 kg/cm2 y una elongación de 25% en un intervalo de 5.08 cm; sin embargo, el esfuerzo último real es de 6 280 kg/cm2 y la deformación unitaria natural es de 83% al presentarse la ruptura.3 Cuando la deformación de elementos de acero está relacionada con la flexión, la torsión o el cortante directo, como sucede con muchos amortiguadores metálicos, los valores del esfuerzo real y la deformación unitaria natural son más relevantes que los del esfuerzo y la elongación resultantes de ensayes de tensión simple, porque ninguno de estos fenómenos, flexión, torsión o cortante directo, exhibe la reducción de área típica de la tensión simple. De las consideraciones anteriores se desprende que, en general, el acero es un material mucho más dúctil y resistente de lo que indican los ensayos de tensión simple. Juiciosamente utilizado, el acero puede ayudar a reducir sustancialmente los daños a las edificaciones causados por los sismos. Marco estructural elástico En relación con el diseño sísmico de estructuras, el Reglamento de Construcciones para el Distrito Federal (RCDF-93) especifica que las distorsiones de entrepiso no deben ser mayores de 0.006 (este límite puede extenderse a 0.012 si se cumplen ciertos requisitos).4 Esto significa que el desplazamiento lateral entre dos pisos consecutivos no debe exceder de 0.006 de la altura del entrepiso, suponiendo que rige el primer límite. Se considera aquí como punto de partida que debe ser posible diseñar un marco estructural cuyo comportamiento sea elástico en tanto las distorsiones de entrepiso no rebasen 0.006. Las vigas y columnas de un tal marco, comparadas con las convencionales, tendrían secciones transversales más pequeñas; y las cuantías de acero (cociente del área del AR entre el área total de la sección de las columnas) aumentarían, dando por resultado un marco menos rígido pero no menos resistente. Es importante destacar que las demandas de ductilidad de este marco serían nulas en tanto las distorsiones de entrepiso estuvieran dentro del límite de 0.006. Supóngase que el marco elástico que se va a diseñar es de seis niveles, como se muestra esquemáticamente en la figura 1. Por norma, se especifica un valor del factor de comportamiento sísmico Q, que puede ser de 1 a 4, aplicándose este último a estructuras para las que se anticipa un comportamiento altamente inelástico. Se justifica usar Q = 4 en el diseño del marco en cuestión, porque eventualmente éste será dotado de amortiguadores que lo capacitarán para disipar energía mediante la gran inelasticidad (ductilidad) desarrollada exclusivamente por los mismos. Supóngase además que la estructura proyectada está clasificada en el grupo B (edificaciones residenciales, comerciales, industriales y para oficinas, así como hoteles), que estará localizada en la zona de terreno compresible del Distrito Federal. El RCDF-93 especifica un coeficiente sísmico c = 0.4 para estas condiciones. La carga de diseño sísmico Pi, representada en la figura 1, se toma como: donde Wo es el peso total de la estructura; Wi, Wj, la porción de Wo localizada o asignada al nivel i o al nivel j, respectivamente; hi, hj, la altura sobre la base al nivel i o al nivel j, respectivamente; y n, el número de niveles. Por otro lado, el cortante basal Vo se relaciona con Wo tal que: La tabla 1 contiene valores del peso por entrepiso Wi, de Pi proveniente de la ecuación (1), y del cortante lateral Vi dado por: La figura 2 muestra un marco plano representativo de cada uno de los seis marcos A, B, C, D, E y F que forman el marco espacial de la figura 1. Si se supone que Pi, representada en la dirección X en la figura 1, está distribuida por partes iguales entre los tres marcos planos A, B y C, entonces cada marco resiste un tercio de Pi. Si Pi actuara en la dirección Z, cada uno de los marcos D, E y F resistiría un tercio de Pi. La figura 2 también muestra las vigas y las columnas identificadas mediante números. Continuando con el diseño de este marco representativo, uno propone, con base en la experiencia y en el sentido práctico, tamaños razonables de las secciones transversales de las vigas y columnas, procediendo a efectuar una corrida tentativa en un programa de computadora, suponiendo que la carga sísmica es un tercio de Pi.5 Este procedimiento de ensayo y error continúa hasta que, dados ciertos supuestos tamaños de las secciones transversales de las vigas y columnas, se determina un valor mayor que un tercio de Pi bajo la acción del cual las distorsiones de entrepiso se aproximan a 0.006. La tabla 2 contiene tamaños de las secciones transversales que se consideran aceptables, y la tabla 3 muestra los desplazamientos de entrepiso correspondientes bajo una carga sísmica que resulta igual a 1.40 veces un tercio de Pi.El programa de computadora citado es apropiado sólo para análisis y diseño elástico de estructuras. Lógicamente, los resultados presentados en las tablas 2 y 3 son aplicables al marco espacial de la figura 1, lo cual significa que este marco, cuyas vigas y columnas se especifican con base en los resultados representativos de la tabla 2, tiene la capacidad de sobrellevar elásticamente los desplazamientos de entrepiso mostrados en la tabla 3. El marco en cuestión también tiene la capacidad de resistir elásticamente una carga sísmica igual a 1.40 veces Pi. Marco elástico amortiguado El marco de la figura 1 satisface, por supuesto, requerimientos de resistencia, pero no es necesariamente capaz de resistir sismos intensos de larga duración cuya frecuencia dominante se acerca a la frecuencia natural de la estructura. Este marco será propenso a resistir sismos con las características citadas si se le provee, según se esquematiza en la figura 3, de amortiguadores que a su vez suministran la fuerza amortiguadora Di. Un valor de Di = 0.5Vi se considera apropiado como primera aproximación; esto significa que la fuerza sísmica lateral sobre la estructura será resistida conjuntamente por los amortiguadores y por el marco estructural, cada cual con igual participación. Se entiende que Di actúa en el mismo plano y opuesta a Vi.6 La tabla 1 contiene valores de Vi para cada nivel del marco de la figura 1; la cantidad de Di que se debe proveer es igual a la mitad de Vi por nivel. La estructura de la figura 3 consta de un marco elástico equipado con amortiguadores tipo óvalo instalados a lo largo de ciertas diagonales. El detalle muestra esquemáticamente la forma de los amortiguadores así como su arreglo para conformar un dispositivo que contiene tantos amortiguadores como sean necesarios a lo largo de cada diagonal. Un amortiguador tipo óvalo al que se ha sometido a ensayes exhaustivos está hecho de solera de acero de 1.27 cm de espesor y 3.81 cm de ancho, y tiene dobleces de 3.90 cm de radio y una longitud total de 35 cm. Se requiere una fuerza de 2 760 kg para causar un desplazamiento máximo de ± 2.5 cm en este amortiguador, pero se ha considerado que la fuerza nominal para causar un desplazamiento cualquiera es: Fn = (2/3) (2 760) = 1 840 kg.6 La cantidad de energía que el amortiguador disipa por ciclo es entonces el producto de Fn (1 840 kg) por el desplazamiento total (10 cm). Detalles completos sobre las características y los ensayes de amortiguadores tipo óvalo se encuentran en la literatura.1,2,6 La figura 4 representa la capacidad. del primer entrepiso de la estructura de la figura 3 para desarrollar comportamiento inelástico (ductilidad), condición que es aproximadamente típica para el resto de la estructura. Ya que Di = 0.50Vi (correspondiente al lazo de histéresis indicado con línea continua, figura 4), tales amortiguadores habilitan la estructura para resistir una carga sísmica adicional igual a 0.50 Pi. Por lo tanto, la capacidad total de esta estructura para resistir carga sísmica mientras su marco sustenta los desplazamientos elásticos de entrepiso consignados en la tabla 4, es igual a 1.90 veces Pi, esto es, 90% por encima de la carga sísmica de diseño, lo que representa un margen de protección por demás amplio. Los amortiguadores contribuyen además a aumentar la rigidez de la estructura, de modo que ésta resista adecuadamente las fuerzas del viento.6 La cantidad de amortiguadores tipo óvalo por entrepiso Ni con la que se equipa la estructura en la dirección X resulta de considerar que: donde q es el ángulo entre la horizontal y la diagonal indicado en la figura 3.6 Por lo tanto, redondeando el valor de Ni al número par más cercano, resulta que: N1 = 66, N2 = 64, N3 = 56, N4 = 46, N5 = 32, y N6 = 16 la misma cantidad de amortiguadores se aplica para equipar la estructura en la dirección Z. Respecto de las cuantías de acero, una muestra de las columnas que sustentan los momentos flexionantes máximos según el programa de computadora citado fue sometida a análisis bajo cargas vivas y muertas de diversas magnitudes, utilizando 4 200 kg/cm2 como esfuerzo de cedencia del acero de refuerzo, 250 kg/cm2 como resistencia del concreto a la compresión, y 2 320 kg/cm2 como módulo del concreto. Los resultados acusan una cuantía de acero máxima de 7.8% . Discusión Es obvio que la cuantía de acero de 7.8% antes señalada es alta, aunque todavía levemente dentro del límite especificado por el American Concrete Institute.7 Esto sugiere que diseñar un marco de concreto reforzado para tolerar distorsiones de entrepiso iguales al límite de 0.006 elásticamente, es llevar las posibilidades al máximo. Si se juzga que esta cuantía de acero es excesiva, quizás deba considerarse una disminución en el límite de la distorsión de entrepiso, el cual podría ser gruesamente 0.004, si se desea que la cuantía de acero baje aproximadamente a 5% manteniendo comportamiento elástico. No se debe perder de vista la conveniencia de que el límite de las distorsiones elásticas de entrepiso sea lo más alto posible para disminuir la posibilidad de daño estructural causado por sismos. Si se optara por limitar las distorsiones de entrepiso a 0.004, en lugar de 0.006, manteniendo la misma capacidad para disipar energía (lazo indicado con línea intermitente, figura 4; las áreas dentro de los dos lazos son iguales), la fuerza amortiguadora tendría que incrementarse de Di = 0.50Vi a Di = 0.75Vi En tal caso, la cantidad de amortiguadores tipo óvalo por entrepiso Ni con la que se equipa la estructura de la figura 3 en la dirección X, tendría que ser N1 = 100, N2 = 94, N3 = 84, N4 = 70, N5 = 48 y N6 = 24 Se aplicaría la misma cantidad de amortiguadores para equipar la estructura en la dirección Z. Además, según la figura 4, la capacidad total de esta estructura para resistir carga sísmica sería aproximadamente 1.65 veces Pi, esto es, 65% por encima de la carga sísmica de diseño, equivalente a un margen de protección todavía cómodamente amplio. Viendo un poco más a futuro, se podría identificar en todo esto un buen incentivo para desarrollar concretos y aceros más resistentes. Si al acero de refuerzo sólo se le demanda deformarse elásticamente para proveer resistencia, entonces su punto de cedencia puede ser sustancialmente más alto. Los aceros al carbono son relativamente baratos y se prestan ciertamente para este tipo de desarrollos. Disponer de concretos y aceros de refuerzo más resistentes posibilitaría reducir las cuantías de acero, lo cual repercute en una disminución de la congestión del acero de refuerzo y problemas asociados. La instalación de amortiguadores tipo óvalo sobre diagonales según se ha ilustrado en este trabajo debe funcionar efectivamente, lo cual quiere decir que la acción amortiguadora se hará presente aun a bajas distorsiones de entrepiso, a condición de que los miembros diagonales sean sustancialmente más rígidos que los mismos amortiguadores. Sin embargo, la instalación de amortiguadores en una estructura puede hacerse de formas muy diversas; 8,9 incluso en el Centro Nacional de Prevención de Desastres se ha sometido a ensayo a los amortiguadores tipo óvalo instalados sobre contravientos en V invertida con resultados satisfactorios.10 En la figura 3, todos los entrepisos de la estructura están habilitados con amortiguadores. Si se juzgara que esto es demasiado complicado y costoso, se podría optar por instalar los amortiguadores sólo en ciertos entrepisos, por ejemplo en el primero, el tercero y el quinto. En tal
caso, sería apropiado rigidizar los entrepisos segundo, cuarto y sexto
mediante muros de rigidez o contravientos, y también sería necesario determinar
de nuevo la capacidad de la estructura para resistir carga sísmica y disipar
energía. Se estima que será posible hacer este tipo de modificaciones
en aras de simplificar la aplicación de amortiguadores a las estructuras
y, por tanto, disminuir costos, con tal que se proceda muy juiciosamente.
La estructura sismorresistente amortiguada que se ha ilustrado aquí está
diseñada con base en amortiguadores tipo óvalo y en el Reglamento de Construcciones
para el Distrito Federal. Por supuesto, resultados equiparables se podrían
obtener utilizando otros reglamentos y amortiguadores de diferentes tipos
basados en la deformación inelástica de los aceros. |